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Abstract—Time-domain reflectometry (TDR) is one of the
standard methods for diagnosing faults in electrical wiring
and interconnect systems, with a long-standing history focused
mainly on hardware development of both high-fidelity systems
for laboratory use and portable hand-held devices for field
deployment. While these devices can easily assess distance to
hard faults such as sustained opens or shorts, their ability to
assess subtle but important degradation such as chafing remains
an open question. This paper presents a unified framework for
TDR-based chafing fault detection in lossy coaxial cables by
combining an S-parameter based forward modeling approach
with a probabilistic (Bayesian) inference algorithm. Results
are presented for the estimation of nominal and faulty cable
parameters from laboratory data.

I. INTRODUCTION

The Federal Aviation Administration (FAA), Naval Systems
Air Command (NAVAIR) and National Aeronautics and Space
Administration (NASA) have all identified wire chafing as the
largest factor contributing to electrical wiring and interconnect
system failures in aging aircraft [1]. Wire chafing is considered
significantly more difficult to detect than hard failures such as
opens and shorts [2] and over the last decade, many time-
domain reflectometry (TDR), frequency-domain reflectometry
(FDR) and time- and frequency-based investigations [3] have
been published. However, we are unaware of any wire fault
detection effort that incorporates a physics-based model of
how the fault affects signal propagation (the “forward model”)
with a probabilistic inference method for inverting the forward
model to go from measured signals to fault parameters.

In this paper, we develop a framework based on scattering
parameters (or S-parameters) that uses a computationally
simple yet effective forward model of how a hole in shielding
affects signal propagation. This forward model is then com-
bined with a Bayesian probabilistic inversion procedure, which
enables robust fault parameter estimation in the presence of
measurement noise, and provides uncertainty information re-
garding the estimates. In our case, the primary fault parameters
of interest are the location and size of holes in the wire
shielding. Although the method we present applies to a wide
variety of wire types, the focus of this first paper is the coaxial
cable, which is arguably the simplest shielded cable geometry
of practical interest. We are currently in the preliminary stages
of investigating the application of our approach to twisted-
shielded-pair wiring, which is used extensively in modern
aircraft for serial communications. The ultimate objective of
our efforts is to detect a chafing fault in progress prior to the
occurrence of a short or open condition.

II. FORWARD MODEL FOR TDR

This section describes our systematic approach to building a
computationally efficient forward model for the interrogation
of a chafed coaxial cable using TDR. The modeling method
of choice is the S-parameter formalism; the reader is referred
to [5], [6] for a refresher. Specifically, each cable segment
is treated as a two-port device with a 2 x 2 matrix of S-
parameters. These S-parameters are then combined in cascade
to obtain the overall response of the system. In this process,
one is aided by the formula:

S12 S21Γ2Γ 1 = S11 
+ 1 − S22Γ2,	

(1)

which relates the reflection coefficients seen looking into
port 1 (Γ1) and out of port 2 (Γ2) of a two-port device within
a network (see Figure 1).

A. Coaxial cable

For nominal ( i.e., unfaulted) segments of the cable, one has

S11 = S22 = 0,

S12 = S21 = S0 (l),

where the dependence of the relevant S-parameters on the
cable length l has been indicated explicitly for later conve-
nience. Adopting the standard textbook model for a coaxial
transmission line (see, for instance, [7], p. 551) one obtains

S0 (l) = e− jk (ω )
l,
	

(2)

where

1	 ωEd (11) .
k(ω) ^ ω

√
μ 0 Ed 

+ 2ln(b/a) jσc a + b J	
(3)

In (3), a and b respectively denote the radius of the core and
the (inner) radius of the shield, both of which are assumed to
have a (finite) conductivity σc , while Ed denotes the permittiv-
ity of the insulator separating the two conductors, and μ 0 is
the vacuum permeability. We will also need the characteristic
impedance of the cable, which is given by

Z0 
= ln(b/a) k(ω )

.	 (4)
2π ωEd

The above formulation relates the key cable parameters ( S0

and Z0) directly to the “constitutive” parameters (σc and Ed ),
and is therefore preferable to the distributed RLCG parameter
model that is more commonly found in textbook treatments.
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Fig. 1. A constant-impedance model for a chafed cable segment.

B. Chafing fault

A simple yet accurate model for the S-parameters of a
chafed coaxial cable is now presented using an approach that
is generalizable to other types of wiring. The situation of
interest is depicted in Figure 1, where a segment of length
d is chafed on a coaxial cable with characteristic impedance
Z0 . The chafed segment is modeled as having a constant ( i.e.,
z- and ω-independent) characteristic impedance ZF. The S-
parameters for this segment are readily found to be:

Γ2 (e—j ω2(d/vp ) − 1)
S11 = S22 

= 1 − Γ 22 e
—jω2(d/vp) ,	 (5)

(1 − Γ2 )e—jω (d/vp )

S21 = S12 = (6)

where Γ2 = (Z0 − ZF )/(Z0 + ZF), and vp is the velocity of
propagation through the chafed segment.

We must next relate the hitherto unknown parameters ZF

and vp to the geometry of the chafe. This can be accomplished
by modeling the chafe as a rectangular section of removed
shielding having a width w, and building a look-up table
that maps w to ZF and vp. We have found that this simple
rectangular geometry is remarkably accurate for modeling
practical chafes, which are typically elliptical in shape. For the
theoretical underpinnings and the numerical implementation of
this approach, the reader is referred to [8]1.

C. TDR hardware

A general model for the TDR hardware is shown in Figure 2.
In this figure, the “down-stream network” represents any
wiring system that is defined by a characteristic impedance
Z0 and a reflection coefficient Γ0 at the system input. The
goal is to determine the experimentally measured voltage VM

in terms of the TDR source voltage VS.

Good models for TDR hardware should incorporate three
practical effects: (1) the frequency-dependent impedance mis-
match between the source and the cable, (2) a measurement
delay time needed to account for signal propagation within
the TDR unit, and (3) a gain factor to account for a typically
small miscalibration between the modeled and measured TDR
response voltages. The equation below for the net transfer
function captures these effects:

H(ω) = 
VM 

= 
G 

C1 + 
ΓS + Γ0 e—j 2ωtM	 (7)

VS 2	 1 + ΓSΓ0	) ,

1Note the method presented in [8] assumes vp is equal to the nominal
velocity of propagation on the cable, which is !-- 1/√μ0 ed . While this is not

theoretically true, the assumption seems to work reasonably well in practice
for the small chafe faults considered in this paper.

where ΓS = (Z0 − ZS) / (Z0 + ZS) accounts for the port
impedance mismatch, tM represents the one-way internal
delay, and G is the gain factor used to account for possible
calibration issues. The key parameters for the TDR unit are
thus seen to be the source impedance ZS, the internal delay
tM, and gain factor G.

D. Model synthesis

The pieces discussed separately above are now put together
to obtain the system model shown in Figure 3. The model is
analyzed from right to left, starting with the load reflection co-
efficient ΓL = (ZL − Z0 )/(ZL + Z0 ). By repeated application
of equation (1), we obtain

Γ2 = S
2

0 (l2)ΓL ,	 (8)
S12 S21Γ2Γ1 = S11 

+ 1 − S22Γ2 ,
	 (9)

Γ0 = S
2

0 (l1)Γ 1 ,	 (10)

where S0 (l) is given in (2), and Sij are given in (5) and (6).
Inserting these equations into (7), we obtain an analytical

relationship between the TDR input and output signals, which
explicitly contains the various physical system and fault pa-
rameters discussed above. (The derivation is straightforward,
but the result is too unwieldy to include here.) Rewriting (7)
in the time domain2 , we have

t

vM (t) = 
J 

h(t − t'; θ) vS (t') dt',	 (11)
0

where the dependence of the impulse response h on the set
θ of key model parameters has been indicated to motivate

2In taking the inverse Fourier transform of H(ω) to obtain h (t) , one must
respect the frequency dependence of the various S-parameters and impedances
in the model, which has been suppressed throughout for notational simplicity.
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Fig. 2. TDR hardware model.
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Fig. 3. S-parameter representation of a chafed coaxial cable.

1 − Γ2 e—jw2(d/vp) 
,



the discussion in §III. Typically, equation (11) is computed
numerically using the Fast Fourier Transform (FFT) algorithm.

We note in passing that this modeling approach can be
generalized readily to a cable with chafes (or other kinds of
faults) at multiple locations, and in fact to arbitrary wiring
networks. Most importantly, as the number of wiring and in-
terconnect components grows, the computational effort needed
to evaluate the model grows only linearly, and the memory
resources needed stays roughly fixed.

III. PROBABILISTIC INVERSION

A. Bayesian framework

In this section, a probabilistic framework is presented for
inferring the fault parameters from measured TDR data. Start-
ing with a sampled version of (11), the measurement process
is modeled in the usual way as

y = F (x; θ) + ν,	 (12)

where x ∈ R' is the interrogation signal injected by the
TDR unit into the cable under test, θ ∈ R' is the set
of unknown model (i.e., system and fault) parameters, the
function F (x; θ) : R' × R' → R' represents the forward
model, ν ∈ R' is a vector of additive random measurement
noise, and y ∈ R' is a time series of voltage samples forming
the measured TDR signal.

Two probability distributions are now introduced for the
construction of a Bayesian inversion framework: (1) the prior
distribution Prob (θ), which describes our state of knowl-
edge regarding the unknown model parameters before any
measurements are made, and (2) the likelihood distribution
Prob (y|θ), which specifies the probability of observing a
particular measurement for a given set of model parameters.
Bayes’ theorem then gives the posterior distribution for θ in
the form [4]

Prob (y|θ) Prob (θ)

f Prob (y|θ') Prob (θ') dθ'

The maximum a posteriori estimate θ* is found by solving
the optimization problem

maximize Prob (θ|y) .	 (14)

Furthermore, the shape and the spread of the posterior distribu-
tion around θ* indicate how confident we are in this estimate.
There are two typical approaches to quantifying this shape for
general distributions like Prob (θ|y), which depends heavily
on the nonlinear forward model (among other things). The first
is to assume the distribution is approximately Gaussian around
the optimal estimate θ* , and to use the inverse of the Hessian
of − log Prob (θ* |y) as an approximation for the covariance
matrix which quantifies the spread of the distribution [4, Ch.
3]. The second approach relies on the remarkable fact that
one can sample random vectors directly from the posterior
distribution Prob (θ|y), and use the spread of the samples to
quantify the distribution shape, without making any additional
Gaussian assumptions. This is the approach we take up in the
next section.

B. Markov-Chain Monte Carlo estimation

Finding the optimal estimate and quantifying the uncertainty
associated with it are computationally challenging tasks when
the forward model F is nonlinear in θ, as in the present case.
Furthermore, in cases where the forward model is an algorithm
(rather than a closed-form expression), it can be prohibitively
expensive to compute the gradient and the Hessian of the cost
function, which are needed to solve the optimization problem
(14) using traditional methods. Thus, a natural approach for
this type of problem is the application of Markov-Chain Monte
Carlo (MCMC) methods to obtain a set of random samples
drawn directly from the posterior distribution, which are used
to estimate the desired quantities by applying the law of large
numbers. The underlying premise for this approach is that, for
sufficiently large N, a set of samples

θi ∼ Prob (θ|y), i = 1, 2, ... , N,	 (15)

adequately captures the essential features of the posterior
distribution. Specifically, the sample θk that maximizes the
posterior distribution provides us with a globally optimal
estimate, while the spread of the N samples around θk may
be taken as a measure of our uncertainty about this estimate.

There are many different MCMC-based algorithms one
might implement to achieve the above sampling. The results
presented in §IV were obtained using a relatively new method
called nested sampling. This algorithm is a natural fit for
solving the estimation problem posed by equations (13) and
(14), while also estimating other relevant quantities such as
the integral in the denominator of (13), which can be used
for model selection ( i.e., choosing the best among competing
forward-modeling schemes). Like many other MCMC meth-
ods, this one also tends to be slow: it took around 8 hours
to solve the estimation examples discussed in §IV on a 32-bit
1.8-GHz Linux PC. The interested reader is referred to [4] for
details on the nested-sampling algorithm.

IV. RESULTS

This section presents our results on system parameter es-
timation and chafing fault detection for a 7-m long RG58
coaxial cable with an open load condition ( i.e., ZL = ∞).
Laboratory measurements were obtained using an Agilent
54754A digital TDR unit. The elements of the measurement
noise vector ν were assumed to be independent and identically
distributed Gaussian random variables with zero mean and
a standard deviation of 1 mV, a value roughly equal to the
worst-case residual error between the measured data and the
optimal model fit. Finally, please note the results presented
here are dependent on the assumption that the total cable
length is known exactly, which may not be true in many
practical settings.

A. Estimating the system parameters

Recalling the development of §II, the key system parameters
that should be inferred from data are the metallic conductivity
and the dielectric permittivity of the coaxial cable, as well as
the port impedance, internal delay, and gain of the TDR unit.

Prob (θ|y) = (13)
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Although nominal values of σc and Ed are typically supplied
by the cable manufacturer, the parameters of a particular cable
may deviate appreciably from the “batch” values, and therefore
it is advisable to infer them instead from measured data. The
same argument holds for the TDR hardware parameters as
well. Thus, for the first inversion problem to be solved, one has
θ = (σc , Ed , ZS , tM , G). Figure 4 shows the optimal estimates
for σc and Ed , along with the estimation uncertainty (specified
as a 95% confidence ellipsoid) obtained with our inversion
procedure. The optimal estimates ± one standard deviation
were: conductivity σc = 3 . 054 ± 0 . 017 × 107 S/m, relative
permittivity Ed = 2 . 2384 ± 0 . 0006, source impedance ZS =
48 . 97 ± 0 . 02 Ω, delay tM = 0 . 2858 ± 0 . 0044 ns, and system
gain G = 1 . 00774 ± 0 . 00008.
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Fig. 6. Model fit to the measured TDR signal using the optimal estimate for
0. The fit captures the variation in the measured signal to within 1 mV, and
includes both the primary and the secondary reflections from a single chafing
fault.

B. Estimating the fault parameters

The system parameters estimated above are now treated as
fixed, and the fault parameters are estimated from measured
TDR data with a single chafe at a distance of 6 m from the
source. Thus, for this second inversion problem to be solved,
one has θ = (w, d, l1) (i.e., the width, the length, and the
location of the chafe). The results of the MCMC estimation
scheme are presented in Figure 5. The distance to fault was
estimated to be 6 . 016±0 . 002 m, while the length and the width
of the chafe are estimated to be 14 ± 3 mm and 2 .8 ± 0 .1 mm,
respectively. The true fault parameters as measured in the lab
with a tape measure for distance and calipers for length and
width were in good agreement with these estimates ( i.e., were
within the derived confidence ellipsoid).

With all the key model parameters inferred from data, we
now use the optimal parameter estimates and the known source
voltage profile vS (t) to compute the model-predicted TDR
signal, vM (t). The result presented in Figure 6 shows near
perfect agreement with the laboratory measurement.
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